998 resultados para Oxide minerals


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction of Bacillus polymyxa with calcite, hematite, corundum and quartz resulted in significant surface chemical changes not only of the cells but also in the minerals. Both the cell surfaces as well as quartz particles were rendered more hydrophobic after mutual interaction, whilst the rest of the minerals exhibited enhanced hydrophilicity after interaction with the bacteria. The bacteria were also observed to be capable of dissolving calcite, hematite and corundum and biosorbing the dissolved metal ions to varying extents. An excess of polysaccharides could be observed on biotreated calcite, hematite and corundum while the predominance of a protein-based metabolic product was evident on quartz surfaces. The utility of bioprocessing in the beneficiation of the above minerals through bioflotation and bioflocculation is demonstrated. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of Bacillus polymyxa and minerals such as hematite, corundum and quartz resulted in significant surface chemical changes, both on the cell surfaces and on the interacted oxide minerals. After such treatment, quartz was rendered relatively more hydrophobic, while hematite and corundum were rendered more hydrophilic. Biopretreatment was observed to be beneficial in the separation of silica from hematite and alumina by both selective flocculation and flotation. The possible role of bacterial adhesion and metabilites in the biobeneficiation process is illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manganese oxide minerals have been used for thousands of years—by the ancients for pigments and to clarify glass, and today as ores of Mn metal, catalysts, and battery material. More than 30 Mn oxide minerals occur in a wide variety of geological settings. They are major components of Mn nodules that pave huge areas of the ocean floor and bottoms of many fresh-water lakes. Mn oxide minerals are ubiquitous in soils and sediments and participate in a variety of chemical reactions that affect groundwater and bulk soil composition. Their typical occurrence as fine-grained mixtures makes it difficult to study their atomic structures and crystal chemistries. In recent years, however, investigations using transmission electron microscopy and powder x-ray and neutron diffraction methods have provided important new insights into the structures and properties of these materials. The crystal structures for todorokite and birnessite, two of the more common Mn oxide minerals in terrestrial deposits and ocean nodules, were determined by using powder x-ray diffraction data and the Rietveld refinement method. Because of the large tunnels in todorokite and related structures there is considerable interest in the use of these materials and synthetic analogues as catalysts and cation exchange agents. Birnessite-group minerals have layer structures and readily undergo oxidation reduction and cation-exchange reactions and play a major role in controlling groundwater chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Leg 193 recovered core from the active PACMANUS hydrothermal field (eastern Manus Basin, Papua New Guinea) that provided an excellent opportunity to study mineralization related to a seafloor hydrothermal system hosted by felsic volcanic rocks. The purpose of this work is to provide a data set of mineral chemistry of the sulfide-oxide mineralization and associated gold occurrence in samples drilled at Sites 1188 and 1189. PACMANUS consists of five active vent sites, namely Rogers Ruins, Roman Ruins, Satanic Mills, Tsukushi, and Snowcap. In this work two sites were studied: Snowcap and Roman Ruins. Snowcap is situated in a water depth of 1670 meters below sea level [mbsl], covers a knoll of dacite-rhyodacite lava, and is characterized by low-temperature diffuse venting. Roman Ruin lies in a water depth of 1693-1710 mbsl, is 150 m across, and contains numerous large, active and inactive, columnar chimneys. Sulfide mineralogy at the Roman Ruins site is dominated by pyrite with lesser amounts of chalcopyrite, sphalerite, pyrrhotite, marcasite, and galena. Sulfide minerals are relatively rare at Snow Cap. These are dominated by pyrite with minor chalcopyrite and sphalerite and traces of pyrrhotite. Native gold has been found in a single sample from Hole 1189B (Roman Ruins). Oxide minerals are represented by Ti magnetite, magnetite, ilmenite, hercynite (Fe spinel), and less abundant Al-Mg rich chromite (average = 10.6 wt% Al2O3 and 5.8 wt% MgO), Fe-Ti oxides, and a single occurrence of pyrophanite (Mn Ti O3). Oxide mineralization is more developed at Snowcap, whereas sulfide minerals are more extensive and show better development at Roman Ruins. The mineralogy was obtained mainly by a detailed optical microscopy study. Oxide mineral identifications were confirmed by X-ray diffraction, and mineral chemistry was determined by electron probe microanalyses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global niobium production is presently dominated by three operations, Araxá and Catalão (Brazil), and Niobec (Canada). Although Brazil accounts for over 90% of the world’s niobium production, a number of high grade niobium deposits exist worldwide. The advancement of these deposits depends largely on the development of operable beneficiation flowsheets. Pyrochlore, as the primary niobium mineral, is typically upgraded by flotation with amine collectors at acidic pH following a complicated flowsheet with significant losses of niobium. This research compares the typical two stage flotation flowsheet to a direct flotation process (i.e. elimination of gangue pre-flotation) with the objective of circuit simplification. In addition, the use of a chelating reagent (benzohydroxamic acid, BHA) was studied as an alternative collector for fine grained, highly disseminated pyrochlore. For the amine based reagent system, results showed that while comparable at the laboratory scale, when scaled up to the pilot level the direct flotation process suffered from circuit instability because of high quantities of dissolved calcium in the process water due to stream recirculation and fine calcite dissolution, which ultimately depressed pyrochlore. This scale up issue was not observed in pilot plant operation of the two stage flotation process as a portion of the highly reactive carbonate minerals was removed prior to acid addition. A statistical model was developed for batch flotation using BHA on carbonatite ore (0.25% Nb2O5) that could not be effectively upgraded using the conventional amine reagent scheme. Results showed that it was possible to produce a concentrate containing 1.54% Nb2O5 with 93% Nb recovery in ~15% of the original mass. Fundamental studies undertaken included FT-IR and XPS, which showed the adsorption of both the protonized amine and the neutral amine onto the surface of the pyrochlore (possibly at niobium sites as indicated by detected shifts in the Nb3d binding energy). The results suggest that the preferential flotation of pyrochlore over quartz with amines at low pH levels can be attributed to a difference in critical hemimicelle concentration (CHC) values for the two minerals. BHA was found to be absorbed on pyrochlore surfaces by a similar mechanism to alkyl hydroxamic acid. It is hoped that this work will assist in improving operability of existing pyrochlore flotation circuits and help promote the development of niobium deposits globally. Future studies should focus on investigation into specific gangue mineral depressants and inadvertent activation phenomenon related to BHA flotation of gangue minerals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new scheme of nomenclature for the pyrochlore supergroup, approved by the CNMNC-IMA, is based on the ions at the A, B and Y sites. What has been referred to until now as the pyrochlore group should be referred to as the pyrochlore supergroup, and the subgroups should be changed to groups. Five groups are recommended, based on the atomic proportions of the B atoms Nb, Ta, Sb, Ti, and W. The recommended groups are pyrochlore, microlite, romite, betafite, and elsmoreite, respectively. The new names are composed of two prefixes and one root name (identical to the name of the group). The first prefix refers to the dominant anion (or cation) of the dominant valence [or H(2)O or rectangle] at the Y site. The second prefix refers to the dominant cation of the dominant valence [or H(2)O or rectangle] at the A site. The prefix "" keno-"" represents "" vacancy"". Where the first and second prefixes are equal, then only one prefix is applied. Complete descriptions are missing for the majority of the pyrochlore-supergroup species. Only seven names refer to valid species on the grounds of their complete descriptions: oxycalciopyrochlore, hydropyrochlore, hydroxykenomicrolite, oxystannomicrolite, oxystibiomicrolite, hydroxycalcioromite, and hydrokenoelsmoreite. Fluornatromicrolite is an IMA-approved mineral, but the complete description has not yet been published. The following 20 names refer to minerals that need to be completely described in order to be approved as valid species: hydroxycalciopyrochlore, fluornatropyrochlore, fluorcalciopyrochlore, fluorstrontiopyrochlore, fluorkenopyrochlore, oxynatropyrochlore, oxyplumbopyrochlore, oxyyttropyrochlore-(Y), kenoplumbopyrochlore, fluorcalciomicrolite, oxycalciomicrolite, kenoplumbomicrolite, hydromicrolite, hydrokenomicrolite, oxycalciobetafite, oxyuranobetafite, fluornatroromite, fluorcalcioromte, oxycalcioromite, and oxyplumboromite. For these, there are only chemical or crystalstructure data. Type specimens need to be defined. Potential candidates for several other species exist, but are not sufficiently well characterized to grant them any official status. Ancient chemical data refer to wet-chemical analyses and commonly represent a mixture of minerals. These data were not used here. All data used represent results of electron-microprobe analyses or were obtained by crystal-structure refinement. We also verified the scarcity of crystal-chemical data in the literature. There are crystalstructure determinations published for only nine pyrochlore-supergroup minerals: hydropyrochlore, hydroxykenomicrolite, hydroxycalcioromite, hydrokenoelsmoreite, hydroxycalciopyrochlore, fluorcalciopyrochlore, kenoplumbomicrolite, oxycalciobetafite, and fluornatroromite. The following mineral names are now discarded: alumotungstite, bariomicrolite, bariopyrochlore, bindheimite, bismutomicrolite, bismutopyrochlore, bismutostibiconite, calciobetafite, ceriopyrochlore-(Ce), cesstibtantite, ferritungstite, jixianite, kalipyrochlore, monimolite, natrobistantite, partzite, plumbobetafite, plumbomicrolite, plumbopyrochlore, stannomicrolite, stetefeldtite, stibiconite, stibiobetafite, stibiomicrolite, strontiopyrochlore, uranmicrolite, uranpyrochlore, yttrobetafite-(Y), and yttropyrochlore-(Y).